| Line 1: | Line 1: | 
|  | + | '''STEP are conducting a review of performance for many BMP types throughout 2018. This content will be updated shortly.'''  | 
|  |  |  |  | 
| − | <table class="table-responsive">
 | + | {|class="wikitable sortable" | 
| − |     <table class="table table-bordered">
 | + | |+ Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref> | 
| − |         <caption><strong>Performance of bioretention with internal water storage<ref>Liu J, Sample D, Bell C, Guan Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014;6(4):1069-1099. doi:10.3390/w6041069.</ref></strong></caption>
 | + | |-  | 
| − |         <tr class='success'>
 | + | !style="background: darkcyan; color: white"|Location | 
| − |             <th class="text-center">Location</th>
 | + | !style="background: darkcyan; color: white"|Filter media composition | 
| − |             <th class="text-center">Biomedia composition</th>
 | + | !style="background: darkcyan; color: white"|Media depth (cm) | 
| − |             <th class="text-center">Media depth (cm)</th>
 | + | !style="background: darkcyan; color: white"|Internal water storage depth (cm) | 
| − |             <th class="text-center">Internal water storage depth (cm)</th>
 | + | !style="background: darkcyan; color: white"|I/P ratio | 
| − |             <th class="text-center">I/P*</th>
 | + | !style="background: darkcyan; color: white"|Runoff volume reduction (%) | 
| − |             <th class="text-center">Runoff volume reduction (%)</th>
 | + | !style="background: darkcyan; color: white"|TSS reduction (%) | 
| − |             <th class="text-center">TSS reduction(%)</th>
 | + | !style="background: darkcyan; color: white"|TN reduction (%) | 
| − |             <th class="text-center">TN reduction (%)</th>
 | + | !style="background: darkcyan; color: white"|TP reduction (%) | 
| − |             <th class="text-center">TP reduction (%)</th>
 | + | |- | 
| − |         </tr>
 | + | !Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref> | 
| − | <tr><td class="text-center">Montréal<ref>Géhéniau N, Fuamba M, Mahaut V, Gendron MR, Dugué M. Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. J Irrig Drain Eng. 2015;141(6):4014073. doi:10.1061/(ASCE)IR.1943-4774.0000836.</ref></td>
 | + | |88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99 | 
| − |             <td class="text-center">88% sand, 8% fines, 4% OM</td>
 | + | |- | 
| − |             <td class="text-center">180</td>
 | + | !Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref> | 
| − |             <td class="text-center">150</td>
 | + | |88% sand, 8% fines, 4% OM||180||150||47||97||99||99||99 | 
| − |             <td class="text-center">47</td>
 | + | |- | 
| − |             <td class="text-center">97</td>
 | + | !rowspan="4"|North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref> | 
| − |             <td class="text-center">99</td>
 | + | |rowspan="4"|96% sand, 4% fines||rowspan="2"|110||88||rowspan="2"|12||89||rowspan="4"|58||rowspan="4"|58||rowspan="4"|-10 | 
| − |             <td class="text-center">99</td>
 | + | |- | 
| − |             <td class="text-center">99</td></tr>
 | + | |58||93 | 
| − | <tr><td class="text-center">Virginia<ref>DeBusk KM, Wynn TM. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J Environ Eng. 2011;137(9):800-808. doi:10.1061/(ASCE)EE.1943-7870.0000388.</ref></td>
 | + | |- | 
| − |             <td class="text-center">88% sand, 8% fines, 4% OM</td>
 | + | |rowspan="2"|96||72||rowspan="2"|13||98 | 
| − |             <td class="text-center">180</td>
 | + | |- | 
| − |             <td class="text-center">150</td>
 | + | |42||100 | 
| − |             <td class="text-center">47</td>
 | + | |- | 
| − |             <td class="text-center">97</td>
 | + | !North Carolina<ref>Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).</ref> | 
| − |             <td class="text-center">99</td>
 | + | |loamy sand, 3% OM||120||60||20||99||-||-||- | 
| − |             <td class="text-center">99</td>
 | + | |- | 
| − |             <td class="text-center">99</td></tr>
 | + | !rowspan="2"|North Carolina<ref>Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.</ref> | 
| − | <tr><td rowspan=4class="text-center">North Carolina<ref>Brown RA, Asce AM, Hunt WF, Asce M. Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. J Environ Eng. 2011;137(11):1082-1091. doi:10.1061/(ASCE)EE.1943-7870.0000437.</ref></td>
 | + | |rowspan="2"|98% sand, 2% fines||90||30||12||90||-||-||- | 
| − |         <td rowspan=4class="text-center">96% sand, 4% fines</td>
 | + | |- | 
| − |         <td rowspan=2class="text-center">110</td>
 | + | |90||60||12||98||-||-||- | 
| − |         <td class="text-center">88</td>
 | + | |- | 
| − |         <td rowspan=2class="text-center">12</td>
 | + | !rowspan="2"|North Carolina<ref>Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.</ref> | 
| − |         <td class="text-center">89</td>
 | + | |rowspan="2"|15% sand, 80% fines, 5% OM||60||45||68||-||-||54||63 | 
| − |         <td rowspan=4class="text-center">58</td>
 | + | |- | 
| − |         <td rowspan=4class="text-center">58</td>
 | + | |90||75||68||-||-||54||58 | 
| − |         <td rowspan=4class="text-center">-10</td></tr>
 | + | |}   | 
| − | <tr><td class="text-center">58</td>
 |  | 
| − |         <td class="text-center">93</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td rowspan=2class="text-center">96</td>
 |  | 
| − |         <td class="text-center">72</td>
 |  | 
| − |         <td rowspan=2class="text-center">13</td>
 |  | 
| − |         <td class="text-center">98</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td class="text-center">42</td>
 |  | 
| − |         <td class="text-center">100</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td class="text-center">North Carolina<ref>Li H, Sharkey LJ, Hunt WF, Davis AP. Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland. J Hydrol Eng. 2009;14(4):407-415. doi:10.1061/(ASCE)1084-0699(2009)14:4(407).</ref></td>
 |  | 
| − |             <td class="text-center">loamy sand, 3% OM</td>
 |  | 
| − |             <td class="text-center">120</td>
 |  | 
| − |             <td class="text-center">60</td>
 |  | 
| − |             <td class="text-center">20</td>
 |  | 
| − |             <td class="text-center">>99</td>
 |  | 
| − |             <td class="text-center">-</td>
 |  | 
| − |             <td class="text-center">-</td>
 |  | 
| − |             <td class="text-center">-</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td rowspan=2class="text-center">North Carolina<ref>Brown RA, Hunt WF. Bioretention Performance in the Upper Coastal Plain of North Carolina. In: Low Impact Development for Urban Ecosystem and Habitat Protection. Reston, VA: American Society of Civil Engineers; 2008:1-10. doi:10.1061/41009(333)95.</ref></td>
 |  | 
| − | <td rowspan=2class="text-center">98% sand, 2% fines</td>
 |  | 
| − |         <td class="text-center">90</td>
 |  | 
| − |         <td class="text-center">30</td>
 |  | 
| − |         <td class="text-center">12</td>
 |  | 
| − |         <td class="text-center">90</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td class="text-center">90</td>
 |  | 
| − |         <td class="text-center">60</td>
 |  | 
| − |         <td class="text-center">12</td>
 |  | 
| − |         <td class="text-center">98</td>
 |  | 
| − |          <td class="text-center">-</td>
 |  | 
| − |          <td class="text-center">-</td>
 |  | 
| − |          <td class="text-center">-</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td rowspan=2class="text-center">North Carolina<ref>Passeport E, Hunt WF, Line DE, Smith RA, Brown RA. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J Irrig Drain Eng. 2009;135(4):505-510. doi:10.1061/(ASCE)IR.1943-4774.0000006.</ref></td>
 |  | 
| − | <td rowspan=2class="text-center">15% sand, 80% fines, 5% OM</td>
 |  | 
| − |         <td class="text-center">60</td>
 |  | 
| − |         <td class="text-center">45</td>
 |  | 
| − |         <td class="text-center">68</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |         <td class="text-center">54</td>
 |  | 
| − |         <td class="text-center">63</td>
 |  | 
| − |         </tr>
 |  | 
| − | <tr><td class="text-center">90</td>
 |  | 
| − |         <td class="text-center">75</td>
 |  | 
| − |         <td class="text-center">68</td>
 |  | 
| − |         <td class="text-center">-</td>
 |  | 
| − |          <td class="text-center">-</td>
 |  | 
| − |          <td class="text-center">54</td>
 |  | 
| − |          <td class="text-center">58</td>
 |  | 
| − |         </tr>
 |  | 
| − |     </table>
 |  | 
| − |   *Impervious/Pervious ratio, i.e. the area of catchment divided by surface area of the cell
 |  | 
| − | </table>
 |  | 
| − | ====References====
 |  | 
| − | <em><references /></em>
 |  | 
| − | {{:Feedback}}
 |  | 
|  |  |  |  | 
| − | <strong>For review</strong>
 | + | ===For review=== | 
|  | *http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000876 (pollutants) |  | *http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0000876 (pollutants) | 
|  | *http://ascelibrary.org/doi/abs/10.1061/9780784413883.003 (maturation) |  | *http://ascelibrary.org/doi/abs/10.1061/9780784413883.003 (maturation) | 
| Line 111: | Line 49: | 
|  | *https://www.chijournal.org/C417 (undersized) |  | *https://www.chijournal.org/C417 (undersized) | 
|  | *https://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/STONE%20THESIS%20FINAL.pdf (modified biomedia) |  | *https://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/STONE%20THESIS%20FINAL.pdf (modified biomedia) | 
|  | + | *http://www.mdpi.com/2073-4441/5/1/13/htm (cold climate) | 
|  | + | ---- | 
|  | + | [[Category: Performance]] |